STEPs Math Quiz 1 Solutions

Monday, July 14, 2025

8:00 AM - 9:00 AM version

Solutions

- 1. From a standard 52-card deck, we are drawing two cards without replacement: (A standard deck has 4 shapes: \heartsuit hearts, \diamondsuit diamonds, \clubsuit clubs, \spadesuit spades, and 13 numbers: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K).
 - (a) What is the probability the first card is a face card (J, Q, or K)? ____3/13___
- 2. Two island bird populations grow exponentially at different rates. Species X doubles every 3 years; Species Y doubles every 5 years. Currently, both populations have the same number of birds. After how many years will Species X population be twice that of Species Y?

$$N \cdot 2^{t/3} = 2 \cdot N \cdot 2^{t/5}$$

$$\Rightarrow \frac{t}{3} = \frac{t}{5} + 1$$

$$\Rightarrow \boxed{t = \frac{15}{2} = 7.5}$$

3. **Sketch** the graph of

$$r(x) = -\frac{2}{x-1} + 3$$

on the grid below, and state: the **domain** and **range**, the vertical and horizontal **asymptotes** (in the form x = a or y = b) based on the graph.

Solution:

• Domain: $x \in \mathbb{R} \setminus \{1\}$ $\Leftrightarrow x \in (-\infty, 1) \cup (1, \infty)$

• Range: $y \in \mathbb{R} \setminus \{3\}$ $\Leftrightarrow y \in (-\infty, 3) \cup (3, \infty)$

• Vertical asymptote: x = 1

• Horizontal asymptote: y = 3

4. Let

$$f(x) = x^2 - x$$
 and $k(x) = \sqrt{x - 2}$.

(a) Evaluate $(f \circ k)(3) = \underline{\qquad \qquad}$

(b) i. Compute
$$(k \circ f)(x) =$$
 $k(f(x)) = \sqrt{x^2 - x - 2} = \sqrt{(x - 2)(x + 1)}$

iii. Write its range: $[0, \infty)$

5. Solve for the unknowns:

(a)
$$2 \cdot 4^{x+1} - 10 = 6$$
. $x = 1/2$

Solution:

$$\Rightarrow 2 \cdot 4^{x+1} = 16$$

$$\Rightarrow 4^{x+1} = 8$$

$$\Rightarrow 2(x+1) = 3$$

$$\Rightarrow \boxed{x = 1/2}$$

(b)
$$\log_3(y+3) - \log_3(y-1) = 2$$
. $y = 3/2$

Solution:

Alternative Solution:

$$\Rightarrow \log_3\left(\frac{y+3}{y-1}\right) = 2$$

$$\Rightarrow \frac{y+3}{y-1} = 9$$

$$\Rightarrow y+3 = 9y-9$$

$$\Rightarrow 8y = 12$$

$$\Rightarrow y = \boxed{3/2}$$

$$a = \log_3(y+3), b = \log_3(y-1)$$

$$\Rightarrow a-b=2, \ 3^a = y+3, \ 3^b = y-1$$

$$\Rightarrow 3^{a-b} = \frac{y+3}{y-1}$$

$$\Rightarrow 3^2 = \frac{y+3}{y-1} \Rightarrow \boxed{y=3/2}$$

(c)
$$2^{\log_8(27)} = _{\underline{}}$$

Solution:

$$2^{\log_8(27)} = (8^{\frac{1}{3}})^{\log_8(27)} = (8^{\log_8(27)})^{\frac{1}{3}} = 27^{\frac{1}{3}} = \boxed{3}$$

Alternative solution:

$$x = \log_8(27) \Rightarrow 8^x = 27 \Rightarrow 2^{3x} = 27 \Rightarrow 2^x = 3 \Rightarrow 2^{\log_8(27)} = \boxed{3}$$

Solutions

- 1. From a standard 52-card deck, we are drawing two cards *without replacement*: (A standard deck has 4 shapes: ♥ hearts, ♦ diamonds, ♣ clubs, ♠ spades, and 13 numbers: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K).
 - (a) What is the probability that the first card is a \diamondsuit diamond card? _____1/4
 - (b) Given that the first card drawn was a \diamondsuit diamond card, what is the probability the second card is a \heartsuit heart card?

2. City A population doubles every 90 years. City B population doubles every 100 years. In the current year, the two cities have the same population count. When will city A have twice as many inhabitants as city B? \Rightarrow number of years: t = 900

$$\begin{aligned} N \cdot 2^{t/90} &= 2 \cdot N \cdot 2^{t/100} \\ \Rightarrow \frac{t}{90} &= \frac{t}{100} + 1 \\ \Rightarrow \boxed{t = 900} \end{aligned}$$

3. **Sketch** the graph of

$$f(x) = \frac{1}{x - 2} + 4$$

on the grid below, and state: the **domain** and **range**, the vertical and horizontal **asymptotes** (in the form x = a or y = b) based on the graph.

Solution:

- Domain: $x \in \mathbb{R} \setminus \{2\}$ $\Leftrightarrow x \in (-\infty, 2) \cup (2, \infty)$
- Range: $y \in \mathbb{R} \setminus \{4\}$ $\Leftrightarrow y \in (-\infty, 4) \cup (4, \infty)$
- Vertical asymptote: x = 2
- Horizontal asymptote: y = 4
- 4. Let $f(x) = \sqrt{x+2}$ and $g(x) = x^2 3x$. Compute the following:
 - (a) Evaluate $(g \circ f)(14) = \underline{\qquad \qquad }$
 - (b) i. Compute $(f \circ g)(x) =$ $f(g(x)) = \sqrt{x^2 3x + 2} = \sqrt{(x-2)(x-1)}$
 - ii. Domain of $(f \circ g)(x) =$ $(-\infty, 1] \cup [2, \infty)$
- 5. Solve the following equations:
 - (a) Solve for x in: $3 \cdot 5^{2x} 8 = 7$

$$\Rightarrow x = 1/2$$

Solution:

$$\Rightarrow 3 \cdot 5^{2x} = 15$$

$$\Rightarrow 5^{2x} = 5$$

$$\Rightarrow 2x = 1$$

$$\Rightarrow x = \boxed{1/2}$$

(b) Solve for y in: $\log_{10}(y+1) - \log_{10}(y) = 2$

 $\Rightarrow y = \underline{1/99}$

Solution:

Alternative Solution:

$$\Rightarrow \log\left(\frac{y+1}{y}\right) = 2$$

$$\Rightarrow a = \log_{10}(y+1), b = \log_{10}(y)$$

$$\Rightarrow a - b = 2, \ 10^a = y+1, \ 10^b = y$$

$$\Rightarrow 10^{a-b} = \frac{y+1}{y}$$

$$\Rightarrow y+1 = 100y$$

$$\Rightarrow 99y = 1$$

$$\Rightarrow y = \boxed{1/99}$$

$$\Rightarrow 10^2 = \frac{y+1}{y} \Rightarrow \boxed{y=1/99}$$

(c) $2^{\log_4(7)} = \sqrt{7}$

Solution:

$$2^{\log_4(7)} = 2^{\frac{1}{2}\log_2(7)} = (2^{\log_2(7)})^{\frac{1}{2}} = 7^{\frac{1}{2}} = \sqrt{7}$$

Alternative solution:

$$2^{\log_4(7)} = (4^{\frac{1}{2}})^{\log_4(7)} = (4^{\log_4(7)})^{\frac{1}{2}} = 7^{\frac{1}{2}} = \boxed{\sqrt{7}}$$

Another solution:

$$x = \log_4(7) \Rightarrow 4^x = 7 \Rightarrow 2^{2x} = 7 \Rightarrow 2^x = \sqrt{7} \Rightarrow 2^{\log_4(7)} = \sqrt{7}$$

Solutions

- 1. From a standard 52-card deck, we are drawing two cards without replacement: (A standard deck has 4 shapes: ♥ hearts, ♦ diamonds, ♣ clubs, ♠ spades, and 13 numbers: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K).
 - (a) What is the probability the first card is a 4? $\underline{\hspace{1cm}}$ $\underline{\hspace{1cm}}$
 - (b) Given the first card drawn was a 4, what is the probability the second card is a 7? 4/51
- 2. Two bacterial cultures have different doubling times. Culture A doubles every 4 hours; Culture B doubles every 6 hours. At time t=0, both cultures have the same number of cells. After how many hours will Culture A have four times as many cells as Culture B?

$$\Rightarrow$$
 number of hours = $t = 24$

Solution:

$$N \cdot 2^{t/4} = 4 \cdot N \cdot 2^{t/6}$$

$$\Rightarrow \frac{t}{4} = \frac{t}{6} + 2$$

$$\Rightarrow \boxed{t = 24}$$

3. **Sketch** the graph of

$$g(x) = \frac{2}{x+3} - 2$$

on the grid below, and state: the **domain** and **range**, the vertical and horizontal **asymptotes** (in the form x = a or y = b) based on the graph.

Solution:

• Domain: $x \in \mathbb{R} \setminus \{-3\}$ $\Leftrightarrow x \in (-\infty, -3) \cup (-3, \infty)$

• Range: $y \in \mathbb{R} \setminus \{-2\}$ $\Leftrightarrow y \in (-\infty, -2) \cup (-2, \infty)$

• Vertical asymptote: x = -3

• Horizontal asymptote: y = -2

4. Let

$$f(x) = x^2 + 2x$$
 and $h(x) = \sqrt{x-3}$.

(a) Evaluate $(f \circ h)(7) = 8$

(b) i. Compute $(h \circ f)(x) = \underline{\qquad} h(f(x)) = \sqrt{x^2 + 2x - 3} = \sqrt{(x+3)(x-1)}$

iii. Write its range: $[0, \infty)$

5. Solve for the unknowns:

(a)
$$4 \cdot 3^{x-1} - 29 = 7$$
. $x =$ _______

Solution:

$$\Rightarrow 4 \cdot 3^{x-1} = 36$$

$$\Rightarrow 3^{x-1} = 9$$

$$\Rightarrow \boxed{x = 3}$$

(b)
$$\log_2(2y) - \log_2(y-1) = 2$$
. $y = \underline{\hspace{1cm}}$

Solution:

Alternative Solution:

$$\Rightarrow \log_2\left(\frac{2y}{y-1}\right) = 2$$

$$\Rightarrow a = \log_2(2y), b = \log_2(y-1)$$

$$\Rightarrow a - b = 2, \ 2^a = 2y, \ 2^b = y-1$$

$$\Rightarrow 2y = 4y - 4$$

$$\Rightarrow y = 2$$

$$\Rightarrow 2^a = \frac{2y}{y-1}$$

$$\Rightarrow 2^a = \frac{2y}{y-1}$$

$$\Rightarrow 2^a = \frac{2y}{y-1}$$

(c)
$$3^{\log_9(8)} = \sqrt{8}$$

Solution:

$$= (9^{\frac{1}{2}})^{\log_9(8)} = (9^{\log_9(8)})^{\frac{1}{2}} = 8^{\frac{1}{2}} = \sqrt{8} = \boxed{2\sqrt{2}}$$

Alternative solution:

$$=3^{\frac{1}{2}\log_3(8)}=(3^{\log_3(8)})^{\frac{1}{2}}=8^{\frac{1}{2}}=\sqrt{8}=\boxed{2\sqrt{2}}$$

Another solution:

$$x = \log_9(8) \Rightarrow 9^x = 8 \Rightarrow 3^{2x} = 8 \Rightarrow 3^x = \sqrt{8} \Rightarrow 3^{\log_9(8)} = 2\sqrt{2}$$