PLACEHOLDER Introduction to Limits

Learning Objectives

What is a Limit?

A limit describes the value that a function approaches as the input approaches a particular value.

We write: $$\lim_{x \to a} f(x) = L$$

This means: "As xx gets closer and closer to aa, f(x)f(x) gets closer and closer to LL."

Graphical Understanding

Consider the function f(x)=x21x1f(x) = \frac{x^2 - 1}{x - 1} when x1x \neq 1.

Even though f(1)f(1) is undefined, we can ask: what value does f(x)f(x) approach as xx approaches 1?

limx1x21x1=limx1(x1)(x+1)x1=limx1(x+1)=2\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1) = 2

Limit Laws

If limxaf(x)=L\lim_{x \to a} f(x) = L and limxag(x)=M\lim_{x \to a} g(x) = M, then:

  1. Sum Rule: limxa[f(x)+g(x)]=L+M\lim_{x \to a} [f(x) + g(x)] = L + M

  2. Difference Rule: limxa[f(x)g(x)]=LM\lim_{x \to a} [f(x) - g(x)] = L - M

  3. Product Rule: limxa[f(x)g(x)]=LM\lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M

  4. Quotient Rule: limxaf(x)g(x)=LM\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} (if M0M \neq 0)

  5. Power Rule: limxa[f(x)]n=Ln\lim_{x \to a} [f(x)]^n = L^n

Types of Limits

Direct Substitution

When f(x)f(x) is continuous at x=ax = a:

limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)

Example: limx2(3x25x+1)=3(2)25(2)+1=3\lim_{x \to 2} (3x^2 - 5x + 1) = 3(2)^2 - 5(2) + 1 = 3

Indeterminate Forms

When direct substitution gives 00\frac{0}{0}, we need algebraic manipulation.

Example:

limx3x29x3=limx3(x3)(x+3)x3=limx3(x+3)=6\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x-3)(x+3)}{x-3} = \lim_{x \to 3} (x+3) = 6

One-Sided Limits

The limit limxaf(x)\lim_{x \to a} f(x) exists if and only if:

limxaf(x)=limxa+f(x)\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)

When Limits Don't Exist

  1. Different one-sided limits
  2. Infinite limits: limxaf(x)=±\lim_{x \to a} f(x) = \pm\infty
  3. Oscillating behavior: Function doesn't settle on a value

Important Limit

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

This limit is crucial for derivatives of trigonometric functions.

Practice Problems

Try these during class:

  1. limx4x216x4\lim_{x \to 4} \frac{x^2 - 16}{x - 4}
  2. limx0x2+3xx\lim_{x \to 0} \frac{x^2 + 3x}{x}
  3. limx2+1x2\lim_{x \to 2^+} \frac{1}{x - 2}