Lecture 23: Implicit Differentiation

Motivation: Why Implicit Differentiation?

So far, you've learned to differentiate functions written explicitly — where one variable is expressed directly in terms of the other (e.g. y=f(x)y = f(x)).

But what if the equation doesn't solve nicely for yy?
What if you're faced with a relation like:

x2+y2=25x^2 + y^2 = 25

This is the equation of a circle — and notice, yy is not isolated!
In many real-world and geometric problems (like circles, ellipses, or strange curves), variables are intertwined in equations.

Implicit differentiation is the tool that lets us find slopes, tangents, and derivatives even when yy is not solved in terms of xx.


The Idea Behind Implicit Differentiation

Suppose you have an equation involving both xx and yy, and yy is a function of xx (even if not written explicitly).

To differentiate implicitly:

  1. Differentiate both sides of the equation with respect to xx.
  2. When you differentiate a term involving yy, use the chain rule:

    ddx[y]=dydxandddx[y2]=2ydydx\frac{d}{dx}[y] = \frac{dy}{dx} \quad\text{and}\quad \frac{d}{dx}[y^2] = 2y \cdot \frac{dy}{dx}

  3. Solve for dydx\frac{dy}{dx} after taking derivatives.

Examples

Example 1: A Circle

x2+y2=25x^2 + y^2 = 25

Differentiate both sides:

ddx[x2]+ddx[y2]=ddx[25]2x+2ydydx=0\frac{d}{dx}[x^2] + \frac{d}{dx}[y^2] = \frac{d}{dx}[25] \Rightarrow 2x + 2y \cdot \frac{dy}{dx} = 0

Solve for dydx\frac{dy}{dx}:

dydx=xy\frac{dy}{dx} = -\frac{x}{y}

This gives the slope of the tangent to the circle at any point (x,y)(x, y).


Example 2: Exponential Function

Find dydx\frac{dy}{dx} if x=ey+yx = e^y + y

Solution:

Differentiate both sides:

ddx[x]=ddx[ey+y]\frac{d}{dx}[x] = \frac{d}{dx}[e^y + y]

1=eydydx+dydx1 = e^y \cdot \frac{dy}{dx} + \frac{dy}{dx}

Factor:

1=(ey+1)dydxdydx=1ey+11 = \left(e^y + 1\right) \cdot \frac{dy}{dx} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{e^y + 1}


Example 3: Logarithmic Function

Find dydx\frac{dy}{dx} if ln(xy)=y+x\ln(xy) = y + x

Solution:

Use the product rule inside the log:

ln(xy)=ln(x)+ln(y)\ln(xy) = \ln(x) + \ln(y)

Differentiate both sides:

ddx[ln(x)+ln(y)]=ddx[y+x]\frac{d}{dx}[\ln(x) + \ln(y)] = \frac{d}{dx}[y + x]

1x+1ydydx=dydx+1\frac{1}{x} + \frac{1}{y} \cdot \frac{dy}{dx} = \frac{dy}{dx} + 1

Move all terms to one side:

1x1=dydx1ydydx\frac{1}{x} - 1 = \frac{dy}{dx} - \frac{1}{y} \cdot \frac{dy}{dx}

Factor dydx\frac{dy}{dx}:

1x1=dydx(11y)dydx=1x111y\frac{1}{x} - 1 = \frac{dy}{dx} \left(1 - \frac{1}{y}\right) \quad \Rightarrow \quad \frac{dy}{dx} = \frac{\frac{1}{x} - 1}{1 - \frac{1}{y}}


Summary of the Rules

Implicit Differentiation Procedure:

  1. Differentiate both sides with respect to xx.
  2. Apply chain rule: whenever you differentiate yy, multiply by dydx\frac{dy}{dx}.
  3. Rearrange and solve for dydx\frac{dy}{dx}.

Exercises: Implicit Differentiation

Section 1: Problems without Natural Log or Exponential

Find dydx\frac{dy}{dx} for the following equations:

  1. x2+y2=16x^2 + y^2 = 16
  2. x2y2=9x^2 - y^2 = 9
  3. xy=1xy = 1
  4. x3+y3=6xyx^3 + y^3 = 6xy
  5. x+y=1\sqrt{x} + \sqrt{y} = 1
  6. ln(x2+y2)=0\ln(x^2 + y^2) = 0
Answer Key
  1. dydx=xy\displaystyle \frac{dy}{dx} = -\frac{x}{y}

  2. dydx=xy\displaystyle \frac{dy}{dx} = \frac{x}{y}

  3. dydx=yx\displaystyle \frac{dy}{dx} = -\frac{y}{x}

  4. dydx=2yx2y22x\displaystyle \frac{dy}{dx} = \frac{2y - x^2}{y^2 - 2x}

  5. dydx=yx\displaystyle \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}

  6. dydx=xy\displaystyle \frac{dy}{dx} = -\frac{x}{y}

Section 2: Problems Involving Exponentials

Find dydx\frac{dy}{dx} for the following equations:

  1. ey+x2=ye^y + x^2 = y
  2. xx=yx^x = y
  3. x=yyx = y^y
  4. ex2y=x2ye^{x^2y} = x^2 y
  5. y=xyy = x^y
Answer Key
  1. dydx=2xey1\displaystyle \frac{dy}{dx} = \frac{-2x}{e^y - 1}

  2. dydx=xx(lnx+1)\displaystyle \frac{dy}{dx} = x^x \left(\ln x + 1\right)

  3. dydx=1yy(lny+1)\displaystyle \frac{dy}{dx} = \frac{1}{y^y \left(\ln y + 1\right)}

  4. dydx=2y2x2y2yx3x\displaystyle \frac{dy}{dx} = \frac{2y-2x^2y^2}{yx^3-x}

  5. dydx=y2x(1ylnx)\displaystyle \frac{dy}{dx} = \frac{y^2}{x \left(1- y\ln x\right)}

Section 3: Problems Involving Natural Logarithms

Find dydx\frac{dy}{dx} for the following equations:

  1. ln(xy)=x+y\ln(xy) = x + y
  2. x2+y2+ln(xy)=0x^2 + y^2 + \ln(xy) = 0
  3. ln(x)+ln(y)=1\ln(x) + \ln(y) = 1
  4. ln(x2y)=y\ln(x^2 y) = y
  5. ln(x+y)=xy\ln(x + y) = xy
  6. ln(xy)+x=y\ln(xy) + x = y
Answer Key
  1. dydx=11x1y1\displaystyle \frac{dy}{dx} = \frac{1 - \frac{1}{x}}{\frac{1}{y} - 1}

  2. dydx=2xyx2y+xy\displaystyle \frac{dy}{dx} = \frac{-2x - \frac{y}{x}}{2y + \frac{x}{y}}

  3. dydx=yx\displaystyle \frac{dy}{dx} = -\frac{y}{x}

  4. dydx=2x+1ydydxdydx=2/x11y\displaystyle \frac{dy}{dx} = \frac{\frac{2}{x} + \frac{1}{y} \frac{dy}{dx}}{\frac{dy}{dx}} = \frac{2/x}{1 - \frac{1}{y}} (Simplify accordingly)

  5. dydx=1x+y(1+dydx)yx\displaystyle \frac{dy}{dx} = \frac{\frac{1}{x + y} (1 + \frac{dy}{dx}) - y}{x} (Implicitly solve for dydx\frac{dy}{dx})

  6. dydx=1x+11y1\displaystyle \frac{dy}{dx} = \frac{\frac{1}{x} + 1}{\frac{1}{y} - 1}

Extra Advanced Problems

Find dydx\frac{dy}{dx} for the following equations:

  1. xy+yx=xyx^{y} + y^{x} = xy

  2. ln(x2+y2)=xy+exy\ln\big(x^2 + y^2\big) = xy + e^{xy}

  3. exy+ln(y)=x2y3e^{xy} + \ln(y) = x^2 y^3

  4. xxy=yyxx^{x^y} = y^{y^x}

  5. ln(y)=x+yxy\ln(y) = \frac{x + y}{x - y}

  6. ex+y=x2y2+ln(xy)e^{x + y} = x^2 - y^2 + \ln(xy)