Algebraic manipulation of limits and asymptotes

Some Algebraic Rules

  1. a+bc=ac+bc\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}
  2. a2b2=(a+b)(ab)a^2 - b^2 = (a+b)(a-b)
  3. a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)
  4. a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2)
  5. a4b4=(a+b)(ab)(a2+b2)a^4 - b^4 = (a+b)(a-b)(a^2 + b^2)
  6. ax2+bx+c=a(xr1)(xr2)ax^2 + bx + c = a(x-r_1)(x-r_2) where r1r_1 and r2r_2 are the roots of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0

Usually, you will see these rules involving a number in place of aa or bb.
For example:

For quadratic expressions, you can use the quadratic formula to find the roots.
For example:
x24x+3=(x1)(x3)x^2 - 4x + 3 = (x-1)(x-3), where r1=1r_1 = 1 and r2=3r_2 = 3 are the solutions to the quadratic equation x24x+3=0x^2 - 4x + 3 = 0.

Reminder of Log rules

  1. logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)
  2. logb(xy)=logb(x)logb(y)\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)
  3. logb(xk)=klogb(x)\log_b(x^k) = k \log_b(x)
  4. logbk(x)=1klogb(x)\log_{b^k}(x) = \frac{1}{k} \log_b(x)
  5. logb(bx)=x\log_b(b^x) = x
  6. logb(1)=0\log_b(1) = 0
  7. logb(b)=1\log_b(b) = 1
  8. logb(x)=logc(x)logc(b)\log_b(x) = \frac{\log_c(x)}{\log_c(b)}

Asymptotes & Intuitive Growth

1. Growth “Ladder”

From slowest to fastest (as xx \to \infty):

  1. Constants: f(x)=cf(x)=c — flat line
  2. Logarithms: logx\log x — very slow climb
  3. Roots/fractional powers: x1/2,x1/3x^{1/2},\,x^{1/3} — slow but steady
  4. Polynomials: xnx^n — speed is proportional to degree nn
  5. Exponentials: exe^x or axa^x — rapid “explosion”

Visual: log = gentle path; root = shallow hill; x2x^2 = ski slope; exe^x = cliff.

2. Horizontal Asymptotes of Rational Functions

For f(x)=p(x)q(x),p(x)=anxn+,  q(x)=bnxn+f(x)=\frac{p(x)}{q(x)},\quad p(x)=a_nx^n+\dots,\;q(x)=b_nx^n+\dots both of degree nn,

limx±f(x)=anbn.\lim_{x\to\pm\infty}f(x) =\frac{a_n}{b_n}.

Asymptote:

y=anbn.y=\frac{a_n}{b_n}.

Example 1:

limx3x4x+25x4+7x2=limx3x45x4=35\lim_{x\to\infty}\frac{3x^4- x+2}{5x^4+7x^2}= \lim_{x\to\infty}\frac{3x^4}{5x^4} = \frac{3}{5}

so y=35y=\frac{3}{5} is the horizontal asymptote.

Example 2:

limx3x3+2xx53x2+1=limx3x3x5=0\lim_{x\to\infty}\frac{3x^3 + 2x}{x^5 - 3x^2 + 1}= \lim_{x\to\infty}\frac{3x^3}{x^5} = 0

so y=0y=0 is the horizontal asymptote.

Example 3:

limxx4+2x2+1x33x2+3x1=limxx4x3=\lim_{x\to\infty}\frac{x^4 + 2x^2 + 1}{x^3 - 3x^2 + 3x - 1}= \lim_{x\to\infty}\frac{x^4}{x^3} = \infty

so there is no horizontal asymptote.

3. Vertical & Slant Asymptotes

Example 1:

limx11(x1)2=\lim_{x\to 1}\frac{1}{(x-1)^2} = \infty

so x=1x=1 is the vertical asymptote.

Example 2:

limx0+log4(x)=\lim_{x\to 0^+}\log_4 (x) = -\infty

so x=0x=0 is the vertical asymptote.

Example 3:

limx1x21x1=limx1(x1)(x+1)x1=limx1(x+1)=2\lim_{x \to 1}\frac{x^2 - 1}{x-1} = \lim_{x \to 1}\frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1}(x+1) = 2

so (1, 2) is a hole in the graph.


Euler Number ee and its properties

What is ee?

ee is a special constant, approximately

e2.718281828e \approx 2.718281828\ldots

It is defined in several equivalent ways. At this point, we will use the limit definition:

Limit definition (compound interest):

e=limn(1+1n)n.e = \lim_{n \to \infty}\Bigl(1 + \tfrac1n\Bigr)^n.

Natural logarithm

The natural logarithm, ln(x)\ln(x), is the inverse of the exponential function exe^x.

ln(x)=loge(x)\ln(x) = \log_e(x)


The rest of this set of notes are for your reference and might make more sense later.

Additional properties of e

Properties of ee

  1. Irrationality: ee cannot be expressed as a fraction of two integers.
  2. Transcendence: ee is not a root of any nonzero polynomial with integer coefficients.
  3. Limit of a sequence:

    e=limn(1+1n)n.e = \lim_{n \to \infty}\Bigl(1 + \tfrac1n\Bigr)^n.

  4. Infinite series expansion:

    e=k=01k!.e = \sum_{k=0}^\infty \frac{1}{k!}.

  5. Unique growth rate: among all exponential functions axa^x, the function exe^x is the only one whose rate of change at x=0x=0 is exactly 1.
  6. Derivative and integral:

    ddxex=ex,exdx=ex+C.\frac{d}{dx}e^x = e^x, \qquad \int e^x\,dx = e^x + C.

  7. Euler’s formula (complex extension):

    eiθ=cosθ+isinθ,e^{i\theta} = \cos\theta + i\sin\theta,

    which for θ=π\theta = \pi gives the celebrated identity

    eiπ+1=0.e^{i\pi} + 1 = 0.

Why do we care about ee?

Alternative definitions

  1. Series definition:

    e=k=01k!=1+1+12+16+124+.e = \sum_{k=0}^\infty \frac{1}{k!} = 1 + 1 + \tfrac12 + \tfrac1{6} + \tfrac1{24} + \cdots.

  2. Differential equation definition: the unique base for which the function f(x)=exf(x)=e^x satisfies

    ddxex=exande0=1.\frac{d}{dx}e^x = e^x \quad\text{and}\quad e^0 = 1.

  3. Via the natural logarithm:

    ln(e)=1,andln(x)=1x1tdt.\ln(e) = 1,\quad\text{and}\quad \ln(x) = \int_1^x \frac{1}{t}\,dt.

  4. As the unique real number satisfying

    1e1tdt=1.\int_1^e \frac{1}{t}\,dt = 1.

Applications and examples

  1. Continuous compounding:
    If an account pays interest at annual rate rr compounded continuously, the balance after tt years is

    A(t)=A0ert.A(t) = A_0\,e^{rt}.

  2. Differential equations:
    The solution to

    dydx=ky,y(0)=y0\frac{dy}{dx} = ky,\quad y(0)=y_0

    is

    y(x)=y0ekx.y(x) = y_0\,e^{kx}.

  3. Approximating ee:
    Using the series up to k=5k=5,

    e1+1+12+16+124+1120=2.716666e \approx 1 + 1 + \tfrac12 + \tfrac16 + \tfrac1{24} + \tfrac1{120} = 2.716666\ldots

  4. Compound interest example:
    $1000 at 5% interest for 3 years, continuously compounded:

    A=1000e0.05×31000×e0.151000×1.1618=$1161.83.A = 1000\,e^{0.05 \times 3} \approx 1000 \times e^{0.15} \approx 1000 \times 1.1618 = \$1161.83.


Exercises

1. Limit calculations

Compute the following limits algebraically. (You can use the limit calculator to check your answers and steps.)

a) What is limx0x2+2xx2+x\lim_{x \to 0} \frac{x^2 + 2x}{x^2 + x}?





b) What is limx1x21x+1\lim_{x \to -1} \frac{x^2 - 1}{x+1}?





c) What is limx1x41x21\lim_{x \to 1} \frac{x^4 - 1}{x^2 - 1}?





d) What is limx2x38x24\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}?





e) What is limx3x29x3\lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x} - \sqrt{3}}?





f) What is limx2x2+x2x24\lim_{x \to -2} \frac{x^2+x-2}{x^2-4}?





g) What is limx01+x1x\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}?





h) What is limx04+x2x\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x}?





2. Limits with infinity

Compute the following limits algebraically. (You can use the limit calculator to check your answers and steps.)

Write 98765 if the limit is \infty and -98765 if the limit is -\infty.

a) What is limxx3+2x2+1x2+3\lim_{x \to \infty} \frac{x^3 + 2x^2 + 1}{x^2 + 3}?





b) What is limxx3+2x2+1x2+3\lim_{x \to -\infty} \frac{x^3 + 2x^2 + 1}{x^2 + 3}?





c) What is limx2x2+3x+13x2+2x+5\lim_{x \to \infty} \frac{2x^2 + 3x + 1}{3x^2 + 2x + 5}?





d) What is limxx2+1x3+2x\lim_{x \to \infty} \frac{x^2 + 1}{x^3 + 2x}?





e) What is limxx2+1x+1\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}?





f) What is limxx2+1x+1\lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x + 1}?





g) What is limxlog3(x)x\lim_{x \to \infty} \frac{\log_3(x)}{\sqrt{x}}?





h) What is limxx2+2xx3+2x\lim_{x \to \infty} \frac{x^2+2^x}{x^3 + 2x}?





i) What is limxx2+2xx3+2x\lim_{x \to -\infty} \frac{x^2+2^x}{x^3 + 2x}?





j) What is limx0+xlog2(x)\lim_{x \to 0^+} x^{\log_2(x)}?





3. Limit calculations with ee

Compute the following limits algebraically.

Each of the following limits can be evaluated as ee to the power of some expression.

a) What is xx: limn(1+12n)n=ex\lim_{n \to \infty} (1+\frac{1}{2n})^n = e^x?





b) What is xx: limn0+(1+n)3n=ex\lim_{n \to 0^+} (1+n)^{\frac{3}{n}} = e^x?





c) What is xx: limn(1+4n)n=ex\lim_{n \to \infty} \sqrt{(1+\frac{4}{n})^{n}} = e^x?





d) What is xx: limn(1+5n)nn=ex\lim_{n \to \infty} \sqrt[n]{(1+\frac{5}{n})^n} = e^x?





4. Decay exercise

The amount of Carbon-14 in a sample decays according to

N(t)=N0ektN(t) = N_0 e^{-kt}

where N0N_0 is the initial amount of Carbon-14 and kk is the decay constant.

a) If the half-life of Carbon-14 is 5730 years, what is the decay constant kk? (compute it in terms of ln\ln)
b) If a sample has 1000 grams of Carbon-14, how much will be left after 10000 years?
c) If a relic contains 80% of the Carbon-14 it originally had, how old is the relic?

5. Additional general practice

6. Challenge exercises

Try to evaluate the following limits:

a) limx0ex1x\lim_{x \to 0} \frac{e^x - 1}{x}      (Hint: use the definition of ee and the limit laws.)

b) limx02x1x\lim_{x \to 0} \frac{2^x - 1}{x}      (Hint: the answer should be expressed in terms of ln\ln)

c) limx0bx1x\lim_{x \to 0} \frac{b^x - 1}{x} for b>0b > 0      (Hint: the answer should be expressed in terms of ln\ln)