Continuity, Laws of limits and Squeeze theorem

Continuity at a point

A function f(x)f(x) is continuous at a point aa if:

limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)

which means that there are three conditions that must be met:

  1. f(a)f(a) is defined
  2. limxaf(x)\lim_{x \to a} f(x) exists (limxa+f(x)=limxaf(x)=L\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L)
  3. limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)

Examples:

  1. f(x)=xxf(x) = \frac{|x|}{x} is not continuous at x=0x = 0 because limx0=1\lim_{x \to 0^-} = -1 and limx0+=1\lim_{x \to 0^+} = 1, so limx0xx\lim_{x \to 0} \frac{|x|}{x} does not exist.

  2. g(x)=x2xg(x) = \frac{x^2}{x} is not continuous at x=0x = 0 because g(0)g(0) is not defined.

  3. h(x)=x2h(x) = x^2 is continuous at x=0x = 0 because limx0x2=0=h(0)\lim_{x \to 0} x^2 = 0 = h(0).

  4. r(x)={x2if x22xif x>2r(x) = \begin{cases} x^2 & \text{if } x \leq 2 \\ 2x & \text{if } x > 2 \end{cases}
    is continuous at x=2x = 2 because limx2r(x)=22=4\lim_{x \to 2^-} r(x) = 2^2 = 4 and limx2+r(x)=22=4\lim_{x \to 2^+} r(x) = 2 \cdot 2 = 4, so limx2r(x)=4=r(2)\lim_{x \to 2} r(x) = 4 = r(2).

Types of Discontinuities:

Removable: the limit exists but f(a)f(a) is undefined or mis‑defined. Example: g(x)=x21x1g(x) = \frac{x^2-1}{x-1} at x=1x = 1.

Jump: left and right limits exist but differ. Example: h(x)={1if x<00if x0h(x) = \begin{cases} 1 & \text{if } x < 0 \\ 0 & \text{if } x \geq 0 \end{cases} at x=0x = 0.

Infinite: limit grows without bound. Example: k(x)=1x2k(x) = \frac{1}{x^2} at x=0x = 0.

Note: Continuity on an interval means continuity at every point in that interval.


Properties of limits

1. Constant limit

limxac=c, where c is a constant\lim_{x \to a} c = c, \text{ where } c \text{ is a constant}

2. Identity limit

limxax=a\lim_{x \to a} x = a

3. Sum/difference limit

If limxaf(x)=L\lim_{x \to a} f(x) = L and limxag(x)=M\lim_{x \to a} g(x) = M, then:

limxa(f(x)+g(x))=limxaf(x)+limxag(x)=L+M\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M

limxa(f(x)g(x))=limxaf(x)limxag(x)=LM\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M

Caution: LL and MM must exist and are finite, so this is not true for \infty - \infty or +()\infty + (-\infty).

4. Product limit

limxa(f(x)g(x))=limxaf(x)limxag(x)=LM\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M

Example: limx3(x2)=limx3xlimx3x=33=9\lim_{x \to 3} (x^2) = \lim_{x \to 3} x \cdot \lim_{x \to 3} x = 3 \cdot 3 = 9

Caution: LL and MM must exist and are finite, so this is not true for 0\infty \cdot 0 or ()\infty \cdot (-\infty).

5. Quotient limit

limxaf(x)g(x)=limxaf(x)limxag(x)=LM, where M0\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}, \text{ where } M \neq 0

Caution: LL and MM must exist and are finite, so this is not true for 00\frac{0}{0} or \frac{\infty}{\infty}.

6. Power limit

If limxaf(x)=L\lim_{x \to a} f(x) = L and nn is any real number, then:

limxa(f(x))n=(limxaf(x))n=Ln\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n = L^n

You can see that if nn is a fraction of the form 1n\frac{1}{n}, then the power limit is the nn-th root of the limit.
So, for example, if n=12n = \frac{1}{2}, limxa(f(x))12=limxaf(x)=L\lim_{x \to a} (f(x))^{\frac{1}{2}} = \sqrt{\lim_{x \to a} f(x)} = \sqrt{L}.

Corollary

If p(x)p(x) is a polynomial function, then:

limxap(x)=p(a)\lim_{x \to a} p(x) = p(a)

Example: limx3(x2+2x+1)=32+23+1=16\lim_{x \to 3} (x^2 + 2x + 1) = 3^2 + 2 \cdot 3 + 1 = 16


Squeeze theorem

If f(x)g(x)h(x)f(x) \leq g(x) \leq h(x) for all xx in an open interval containing aa, except possibly at aa, and if

limxaf(x)=limxah(x)=L\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L

then

limxag(x)=L\lim_{x \to a} g(x) = L

Example:

limx0xsin(1x)=0\lim_{x \to 0} x \sin(\frac{1}{x}) = 0

Reasoning:

For all xx, 1sin(1x)1-1 \leq \sin(\frac{1}{x}) \leq 1.

Multiply through by xx:

xxsin(1x)x-x \leq x \sin(\frac{1}{x}) \leq x

Since limx0(x)=0\lim_{x \to 0} (-x) = 0 and limx0x=0\lim_{x \to 0} x = 0, by the Squeeze Theorem,

limx0xsin(1x)=0\lim_{x \to 0} x \sin(\frac{1}{x}) = 0

Graph of squeeze theorem

Exercises

1. Check your understanding - Basic limit properties

a) What is limx2(3x2+2x1)\lim_{x \to 2} (3x^2 + 2x - 1)?





b) What is limx1(x32x2+4)\lim_{x \to -1} (x^3 - 2x^2 + 4)?





c) What is limx0x2+3xx+1\lim_{x \to 0} \frac{x^2 + 3x}{x+1}?





d) What is limx4x2+9\lim_{x \to 4} \sqrt{x^2 + 9}?





e) What is limx2x23x+2x2\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2}?





f) What is limx1x31x1\lim_{x \to 1} \frac{x^3 - 1}{x - 1}?





2. Applying limit properties step by step

a) If limx3f(x)=4\lim_{x \to 3} f(x) = 4 and limx3g(x)=2\lim_{x \to 3} g(x) = 2, what is limx3(f(x)+g(x))\lim_{x \to 3} (f(x) + g(x))?





b) If limx3f(x)=4\lim_{x \to 3} f(x) = 4 and limx3g(x)=2\lim_{x \to 3} g(x) = 2, what is limx3(f(x)g(x))\lim_{x \to 3} (f(x) \cdot g(x))?





c) If limx3f(x)=4\lim_{x \to 3} f(x) = 4 and limx3g(x)=2\lim_{x \to 3} g(x) = 2, what is limx3f(x)g(x)\lim_{x \to 3} \frac{f(x)}{g(x)}?





d) If limx3f(x)=4\lim_{x \to 3} f(x) = 4, what is limx3(f(x))2\lim_{x \to 3} (f(x))^2?





e) If limx3f(x)=4\lim_{x \to 3} f(x) = 4, what is limx3f(x)\lim_{x \to 3} \sqrt{f(x)}?





f) If limx3f(x)=5\lim_{x \to 3} f(x) = 5 and limx3g(x)=2\lim_{x \to 3} g(x) = 2, what is limx3(f(x)2g(x))\lim_{x \to 3} (f(x) - 2g(x))?





3. Continuity practice

a) Is the following function continuous at x=2x = 2?

f(x)={x2,x<2x+2,x2 f(x) = \begin{cases} x^2, & x < 2 \\ x+2, & x \geq 2 \end{cases}

b) Is the following function continuous at x=3x = 3?

g(x)={x29x3,x<32x+6,x3 g(x) = \begin{cases} \frac{x^2-9}{x-3}, & x < 3 \\ 2\sqrt{x+6}, & x \geq 3 \end{cases}

c) Is the following function continuous at x=0x = 0?

h(x)={2x+1,x<0x2+1,x0 h(x) = \begin{cases} 2^{x+1}, & x < 0 \\ x^2 + 1, & x \geq 0 \end{cases}

d) Is the following function continuous at x=1x = 1?

k(x)={4x11,x<1log2(x2),x1 k(x) = \begin{cases} 4^{x-1} - 1, & x < 1 \\ \log_2(x^2), & x \geq 1 \end{cases}

e) Is the following function continuous at x=1x = 1?

l(x)={x21x+1,x<1x3+2x21,x1 l(x) = \begin{cases} \frac{x^2-1}{x+1}, & x < 1 \\ x^3+2x^2-1, & x \geq 1 \end{cases}

4. Find continuity values

a) Find mm so that the piecewise function below is continuous at x=3x = 3:

f(x)={2x+m,x<3x21,x3 f(x) =\begin{cases} 2x + m, & x < 3 \\ x^2 - 1, & x \geq 3 \end{cases}

b) Determine the values of m,nm, n such that the following function is continuous for all real numbers:

f(x)={x2+nx+m,x<22xm,2x4xn,x>4 f(x) =\begin{cases} -x^2 + nx + m, & x < 2 \\ 2x - m, & 2\leq x \leq 4 \\ -x - n, & x > 4 \end{cases}

c) Find all nn so that the piecewise function below is continuous for all real numbers:

f(x)={2x,x<nx2,xn f(x) = \begin{cases} 2^x, & x < n \\ x^2, & x \geq n \end{cases}

5. Squeeze theorem applications

Use the squeeze theorem to find the following limits:

a) limx0x21x2\lim_{x \to 0} x \cdot 2^{\frac{-1}{x^2}}

(Hint: for x0x \neq 0, note that 0<21x2<10 < 2^{\frac{-1}{x^2}} < 1)

b) limx0x2cos(1x)\lim_{x \to 0} x^2 \cos(\frac{1}{x})

6. Graphical exploration of squeeze theorem

Using graphical software (like Desmos or GeoGebra), plot the following functions and identify the limits:

a) Plot the functions f(x)=x2f(x) = -x^2, g(x)=x2sin(1x)g(x) = x^2 \sin(\frac{1}{x}), and h(x)=x2h(x) = x^2 on the same graph. Observe how g(x)g(x) is "squeezed" between f(x)f(x) and h(x)h(x).

b) f(x)=xsin(1x)f(x) = x \sin(\frac{1}{x}) as xx approaches 0. Verify the squeeze theorem.

c) g(x)=sin(x)xg(x) = \frac{\sin(x)}{x} as xx approaches 0.