Existence of limits, one sided limits, and infinity limits.
One sided limits
When x approaches a point a from one side only:
- Left-sided limit: limx→a−f(x)=L
- means x approaches a with x<a,f(x)→L
- Right-sided limit: limx→a+f(x)=L
- means x approaches a with x>a,f(x)→L
Examples:
x→2−limx2=4
x→2+limx2=4
x→0+limx1=∞
x→0−limx1=−∞
x→0+limx∣x∣=x→0+limxx=1
x→0−limx∣x∣=x→0−limx−x=−1
Existence of limits
A limit exists if and only if the left-sided limit and the right-sided limit are equal.
x→alimf(x)=L⟺x→a−limf(x)=x→a+limf(x)=L
Types of non-existence
- Jump discontinuity: limx→a−f(x)=limx→a+f(x).
- Infinite discontinuity: limx→a+f(x)=∞ and limx→a−f(x)=−∞ for example.
Examples:
x→0limx∣x∣ does not exist because x→0+limx∣x∣=1=x→0−limx∣x∣=−1
x→0limx1 does not exist because x→0+limx1=∞=x→0−limx1=−∞
Example
f(x)={x2+1x+1if x≤0if x>0
x→0−limf(x)=x→0−lim(x2+1)=1
x→0+limf(x)=x→0+lim(x+1)=1
x→0limf(x)=1
Infinity limits
Vertical Asymptotes
If f(x) grows without bound as x approaches a, we write
x→alimf(x)=∞
or
x→alimf(x)=−∞
This signals a vertical asymptote at x=a.
Example:
h(x)=(x−3)21
As x→3, denominator →0, numerator positive →
x→3limh(x)=∞
One-sided blow-up
p(x)=x−11
One‐sided blow‐up:
x→1−limp(x)=−∞
x→1+limp(x)=∞
Horizontal Asymptotes
Describing end‐behavior:
x→∞limf(x)=L
x→∞limf(x)=L⟹y=L is a horizontal asymptote on the right
Similarly for limx→−∞f(x)=L.
Examples:
x→∞lim5x2−12x2+3=52
x→−∞lim5x2−12x2+3=52
Example 2:
x→∞lim2−x=0
Example 3:
x→−∞lim2−x=∞
Exercises
0. Feedback
Please fill this feedback form on week 3: Feedback form
1. Check your understanding
Write 98765 if the limit is ∞ and -98765 if the limit is −∞.
a) What is limx→3+(2x+7)?
b) What is limx→3−(2x+7)?
c) What is limx→−1x∣x∣?
d) What is limx→3+x−31?
e) What is limx→3−x−31?
f) What is limx→3x−3x2−9?
g) What is limx→−1+x2−11?
h) What is limx→1−x−1x2−1?
i) What is limx→1+x−1x2−1?
2. Evaluate the limit using graphs
Use graphs (Desmos or GeoGebra) to estimate the following limits.
Write 98765 if the limit is ∞ and -98765 if the limit is −∞.
a) limx→2+x−2log(x).
b) limx→1x−1log(x). (Round to 2 decimal places)
c) limx→∞4x5−3x2+1.
d) limx→−∞4x5−3x2+1.
e) limx→∞x−x.
f) limx→∞x+14+9x2.
3. Evaluate the limit using algebra
Do the corrective assignment problems in the following link:
solving limits algebraically
(For more problems and videos, see this lesson page and this other lesson)