Existence of limits, one sided limits, and infinity limits.

One sided limits

When xx approaches a point aa from one side only:

Examples:

limx2x2=4\lim_{x \to 2^-} x^2 = 4

limx2+x2=4\lim_{x \to 2^+} x^2 = 4

limx0+1x=\lim_{x \to 0^+} \frac{1}{x} = \infty

limx01x=\lim_{x \to 0^-} \frac{1}{x} = -\infty

limx0+xx=limx0+xx=1\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1

limx0xx=limx0xx=1\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1


Existence of limits

A limit exists if and only if the left-sided limit and the right-sided limit are equal.

limxaf(x)=L    limxaf(x)=limxa+f(x)=L\lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L

Types of non-existence

Examples:

limx0xx does not exist because limx0+xx=1limx0xx=1\lim_{x \to 0} \frac{|x|}{x} \text{ does not exist because } \lim_{x \to 0^+} \frac{|x|}{x} = 1 \neq \lim_{x \to 0^-} \frac{|x|}{x} = -1

limx01x does not exist because limx0+1x=limx01x=\lim_{x \to 0} \frac{1}{x} \text{ does not exist because } \lim_{x \to 0^+} \frac{1}{x} = \infty \neq \lim_{x \to 0^-} \frac{1}{x} = -\infty

Example

f(x)={x2+1if x0x+1if x>0f(x) = \begin{cases} x^2 + 1 & \text{if } x \leq 0 \\ x + 1 & \text{if } x > 0 \end{cases}

limx0f(x)=limx0(x2+1)=1\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^2 + 1) = 1

limx0+f(x)=limx0+(x+1)=1\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + 1) = 1

limx0f(x)=1\lim_{x \to 0} f(x) = 1


Infinity limits

Vertical Asymptotes

If f(x)f(x) grows without bound as xx approaches aa, we write

limxaf(x)=\lim_{x \to a} f(x) = \infty

or

limxaf(x)=\lim_{x \to a} f(x) = -\infty

This signals a vertical asymptote at x=ax = a.

Example:

h(x)=1(x3)2h(x) = \frac{1}{(x-3)^2}

As x3x \to 3, denominator 0\to 0, numerator positive \to

limx3h(x)=\lim_{x \to 3} h(x) = \infty

One-sided blow-up

p(x)=1x1p(x) = \frac{1}{x-1}

One‐sided blow‐up:

limx1p(x)=\lim_{x \to 1^-} p(x) = -\infty

limx1+p(x)=\lim_{x \to 1^+} p(x) = \infty

Horizontal Asymptotes

Describing end‐behavior:

limxf(x)=L\lim_{x \to \infty} f(x) = L

limxf(x)=L    y=L is a horizontal asymptote on the right\lim_{x \to \infty} f(x) = L \implies y = L \text{ is a horizontal asymptote on the right}

Similarly for limxf(x)=L\lim_{x \to -\infty} f(x) = L.

Examples:

limx2x2+35x21=25\lim_{x \to \infty} \frac{2x^2 + 3}{5x^2 - 1} = \frac{2}{5}

limx2x2+35x21=25\lim_{x \to -\infty} \frac{2x^2 + 3}{5x^2 - 1} = \frac{2}{5}

Example 2:

limx2x=0\lim_{x \to \infty} 2^{-x} = 0

Example 3:

limx2x=\lim_{x \to -\infty} 2^{-x} = \infty

Exercises

0. Feedback

Please fill this feedback form on week 3: Feedback form

1. Check your understanding

Write 98765 if the limit is \infty and -98765 if the limit is -\infty.

a) What is limx3+(2x+7)\lim_{x \to 3^+} (2x + 7)?





b) What is limx3(2x+7)\lim_{x \to 3^-} (2x + 7)?





c) What is limx1xx\lim_{x \to -1} \frac{|x|}{x}?





d) What is limx3+1x3\lim_{x \to 3^+} \frac{1}{x-3}?





e) What is limx31x3\lim_{x \to 3^-} \frac{1}{x-3}?





f) What is limx3x29x3\lim_{x \to 3} \frac{x^2 - 9}{x - 3}?





g) What is limx1+1x21\lim_{x \to -1^+} \frac{1}{x^2 - 1}?





h) What is limx1x21x1\lim_{x \to 1^-} \frac{x^2 - 1}{x-1}?





i) What is limx1+x21x1\lim_{x \to 1^+} \frac{x^2 - 1}{x-1}?





2. Evaluate the limit using graphs

Use graphs (Desmos or GeoGebra) to estimate the following limits.

Write 98765 if the limit is \infty and -98765 if the limit is -\infty.

a) limx2+log(x)x2\lim_{x \to 2^+} \frac{\log (x)}{x-2}.





b) limx1log(x)x1\lim_{x \to 1} \frac{\log (x)}{x-1}. (Round to 2 decimal places)





c) limx4x53x2+1\lim_{x \to \infty} 4x^5-3x^2+1.





d) limx4x53x2+1\lim_{x \to -\infty} 4x^5-3x^2+1.





e) limxxx\lim_{x \to \infty} \sqrt{x} - x.





f) limx4+9x2x+1\lim_{x \to \infty} \frac{\sqrt{4+9x^2}}{x+1}.





3. Evaluate the limit using algebra

Do the corrective assignment problems in the following link:
solving limits algebraically

(For more problems and videos, see this lesson page and this other lesson)