Review Questions

  1. Given: 32a+18b10=23\cdot 2^{a+1}\cdot 8^b - 10 = 2, find a+3ba+3b.

  2. Evaluate 4log2(5)+log11(114)+20log20(2005)4^{\log_2(5)} + \log_{11}(11^{4}) + 20^{\, \log_{20}(2005)} (Hint: world cup)

  3. Solve for xx: log(x2)+log(1x)=3\log (x^2) + \log (\frac{1}{x}) = 3

  4. Find the domain and range of the function f(x)=293xf(x)=2-\sqrt{9-3x}.

  5. Consider the functions f(x)=log3(x1)f(x)=\log_3(x-1) and g(x)=2x4g(x)=\sqrt{2x-4}.
    a. What are the domains of f(x)f(x) and g(x)g(x)?
    b. Find f(g(x))f(g(x)) and g(f(x))g(f(x)).
    c. Find the domains of f(g(x))f(g(x)) and g(f(x))g(f(x)).

  6. If the graph of the function f(x)=1x1f(x)=1-\sqrt{x-1} is reflected across the y-axis, then shifted 2 units to the right and 3 units upward, then find the equation for the new graph.

  7. If f(x)=3x+4f(x)=\sqrt{3x+4} and g(x)=1x4g(x)=\frac{1}{x-4}, what is the formula for g1(f(x))g^{-1}(f(x)) and what is its domain?

  8. Let the function drawn in the graph below be g(x)g(x), describe a formula for g(x)g(x) in terms of f(x)=x2f(x)=x^2. (Hint: think about function transformations)

Graph 1
  1. Give a formula for the function drawn in the graph below.
Graph 2