Lecture 9: Operations on Functions (continued) — Inverse Functions & Implicit vs. Explicit

1. Inverse Functions

1.1 Definition & Existence

An inverse function f1f^{-1} “undoes” ff:

f1(f(x))=x,f(f1(x))=x.f^{-1}(f(x)) = x,\quad f(f^{-1}(x)) = x.

A function ff has an inverse if and only if it is one-to-one (injective) and onto its range.

1.2 One-to-One & the Horizontal Line Test

Example:


2. Finding an Inverse Algebraically

  1. Write y=f(x)y = f(x).
  2. Swap xx and yy: x=f(y)x = f(y).
  3. Solve for yy; that gives f1(x)f^{-1}(x).
  4. State domain of f1f^{-1} = range of ff, and vice versa.

Example:
f(x)=x1x+2f(x)=\dfrac{x-1}{x+2}.

y=x1x+2    x=y1y+2    x(y+2)=y1    y(x1)=2x1y = \frac{x-1}{x+2} \;\Longrightarrow\; x = \frac{y-1}{y+2} \;\Longrightarrow\; x(y+2)=y-1 \;\Longrightarrow\; y(x-1) = -2x-1

f1(x)=2x1x1.\Longrightarrow \boxed{f^{-1}(x) = \frac{-2x - 1}{\,x - 1\,}.}


3. Graphing Inverses

Tip: Reflect landmark points (intercepts, extrema) across the line y=xy=x.


4. Implicit vs. Explicit Functions

4.1 Explicit Form

y=f(x).y = f(x).

– Direct formula for yy.
– Easy to evaluate and plot.

4.2 Implicit Form

F(x,y)=0,F(x,y) = 0,

where solving for yy may require multiple branches or be impossible in closed form (i.e. no single y=y= expression in xx).

Example (Circle):

x2+y29=0.x^2 + y^2 - 9 = 0.

Explicit branches:
y=+9x2,y=9x2.\displaystyle y = +\sqrt{9 - x^2},\quad y = -\sqrt{9 - x^2}.


5. When to Use Implicit Representation

Example (Folium):
x3+y33xy=0\displaystyle x^3 + y^3 - 3xy = 0
– Has a loop; no single explicit y=f(x)y=f(x) covering all points.


Regular Exercises

  1. Inverse Practice
    a) f(x)=3x5f(x)=3x-5
    b) f(x)=x+2f(x)=\sqrt{x+2}
    c) f(x)=2x+1x1f(x)=\dfrac{2x+1}{x-1}

  2. Horizontal Line Test
    Determine if each is invertible on R\mathbb{R}:
    a) y=x24y = x^2 - 4
    b) y=2xy = 2^x
    c) y=log10xy = \log_{10} x

  3. Graph & Reflect

    • Plot f(x)=x33xf(x)=x^3 - 3x.
    • On [1,)[1,\infty), find and plot its inverse branch.
    • Include the line y=xy = x.
  4. Inverse Composition
    Let f(x)=2x+3f(x)=2x+3, g(x)=xg(x)=\sqrt{x}.

    • Compute (fg)1(f\circ g)^{-1}.
    • Compare with g1f1g^{-1}\circ f^{-1}.
  5. Implicit → Explicit
    Given x2+xy+y27=0x^2 + xy + y^2 - 7 = 0:

    • Solve for yy to find both branches.
    • State the domain for each branch.
  6. Implicit Curve Analysis
    For x4+y4=8xyx^4 + y^4 = 8xy:

    • Sketch or graph the relation.
    • Identify loops or intersections.
    • Explain why no single explicit y=f(x)y=f(x) exists.