lecture 7: Exponential and Logarithmic Functions — Graphs, Domain and Range, Discontinuities, and Infinity Behavior

Exponential Functions

1. What Is an Exponential Function?

An exponential function has the form:

f(x)=axf(x) = a^x

Where:

Example: f(x)=2xf(x) = 2^x, f(x)=10xf(x) = 10^x, f(x)=exf(x) = e^x


2. Real-World Examples

These all grow (or decay) exponentially — very fast!


3. Graph and Behavior

Function Graph Shape Domain Range Discontinuities
f(x)=axf(x) = a^x (for a>1a > 1) Grows rapidly R\mathbb{R} (0,)(0, \infty) None
f(x)=axf(x) = a^x (for 0<a<10 < a < 1) Decreases rapidly R\mathbb{R} (0,)(0, \infty) None

Horizontal asymptote at y=0y = 0

Graph of 2x2^x and 0.4x0.4^x

Graph of exponential function

Logarithmic Functions

1. What Is a Logarithm?

A logarithm is the inverse of an exponential function.

logb(x)=y    by=x\log_b(x) = y \iff b^y = x


2. Graph and Behavior

Function Graph Shape Domain Range Discontinuities
f(x)=logb(x) for b>1f(x) = \log_b(x) \text{ for } b > 1 Increases slowly (0,)(0, \infty) R\mathbb{R} Vertical asymptote at x=0x = 0
f(x)=logb(x) for 0<b<1f(x) = \log_b(x) \text{ for } 0 < b < 1 Decreases slowly (0,)(0, \infty) R\mathbb{R} Vertical asymptote at x=0x = 0

No output for x0x \leq 0

Graph of log2(x)\log_2(x) and log0.4(x)\log_{0.4}(x)

Graph of logarithmic function

Domain and Range Summary

Function Domain Range
f(x)=axf(x) = a^x R\mathbb{R} (0,)(0, \infty)
f(x)=logb(x)f(x) = \log_b(x) (0,)(0, \infty) R\mathbb{R}

Infinity Behavior

Exponential Growth

Exponential Decay

Logarithmic Behavior

f(x)=logb(x)f(x) = \log_b(x)


Discontinuities and Asymptotes

1. Exponential Functions

2. Logarithmic Functions


Logarithmic Properties

All rules and properties are valid for any base b>0b > 0 and b1b \neq 1, and can be proven using the definition of logarithms (by=x    logb(x)=yb^y = x \iff \log_b(x) = y).

Rules of logarithms:

Change of base formula:


Regular Exercises

1. Calculate the following

a) What is log2(8)\log_2(8)?








Think: 2 raised to what power equals 8?


b) What is log3(19)\log_3\left(\frac{1}{9}\right)?








Think: 3 raised to what power equals 1/9?


c) What is 2log2(5)2^{\log_2(5)}?








This is testing the inverse relationship between exponentials and logarithms


d) What is 4log2(3)4^{\log_2(3)}?








Think: 2 raised to what power equals 3?


2. Domain and Range Practice

Determine the domain and range of each:

Solution
a) (f(x)=3x24)( f(x) = 3^{x^2 - 4} )

b) (f(x)=log10(x21))( f(x) = \log_{10}(x^2 - 1) )

x21>0x2>1x<1 or x>1x^2 - 1 > 0 \Rightarrow x^2 > 1 \Rightarrow x < -1 \text{ or } x > 1

c) f(x)=log10(2x)f(x) = \log_{10}(2 - x)

3. Prove Logarithmic Properties

Use the definition logb(x)=y    by=x\log_b(x) = y \iff b^y = x to prove the following properties:

Solution
a) Prove: logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)
Let:

logb(x)=mbm=xandlogb(y)=nbn=y\log_b(x) = m \Rightarrow b^m = x \quad \text{and} \quad \log_b(y) = n \Rightarrow b^n = y

Multiply:

xy=bmbn=bm+nlogb(xy)=m+n=logb(x)+logb(y)xy = b^m \cdot b^n = b^{m+n} \Rightarrow \log_b(xy) = m + n = \log_b(x) + \log_b(y)

b) Prove: logb(x/y)=logb(x)logb(y)\log_b(x/y) = \log_b(x) - \log_b(y)
Let logb(x)=m\log_b(x) = m and logb(y)=n\log_b(y) = n

x=bm,  y=bnxy=bmbn=bmnlogb(x/y)=mn=logb(x)logb(y)\Rightarrow x = b^m, \; y = b^n \Rightarrow \frac{x}{y} = \frac{b^m}{b^n} = b^{m - n} \Rightarrow \log_b(x/y) = m - n = \log_b(x) - \log_b(y)

c) Prove: logb(xk)=klogb(x)\log_b(x^k) = k \log_b(x)
Let logb(x)=mx=bm\log_b(x) = m \Rightarrow x = b^m

xk=(bm)k=bkmlogb(xk)=km=klogb(x)x^k = (b^m)^k = b^{km} \Rightarrow \log_b(x^k) = km = k \log_b(x)

4. Bacteria Growth

A scientist is growing a bacteria culture in a lab. At the start, there are 100 bacteria. The population doubles every 3 hours.

Questions:

Solution
a) The bacteria doubles every 3 hours starting from 100.
General exponential form:

P(t)=P02t/3P(t) = P_0 \cdot 2^{t/3}

So:

P(t)=1002t/3P(t) = 100 \cdot 2^{t/3}

b) After 12 hours:

P(12)=100212/3=10024=10016=1600P(12) = 100 \cdot 2^{12/3} = 100 \cdot 2^4 = 100 \cdot 16 = 1600

So, 1600 bacteria after 12 hours.

c) Want:

1002t/364002t/3642t/3=26t3=6t=18100 \cdot 2^{t/3} \geq 6400 \Rightarrow 2^{t/3} \geq 64 \Rightarrow 2^{t/3} = 2^6 \Rightarrow \frac{t}{3} = 6 \Rightarrow t = 18

So, the population reaches at least 6400 after 18 hours.

5. Solve the exponential equation

Solve for xx:

52x=5x+165^{2x} = 5^{x+1} - 6

Solution
Solve:

52x=5x+165^{2x} = 5^{x+1} - 6

Let’s set y=5xy = 5^x.
Then:

52x=(5x)2=y2,5x+1=55x=5y5^{2x} = (5^x)^2 = y^2, \quad 5^{x+1} = 5 \cdot 5^x = 5y

Substituting:

y2=5y6y25y+6=0(y2)(y3)=0y=2 or y=3y^2 = 5y - 6 \Rightarrow y^2 - 5y + 6 = 0 \Rightarrow (y - 2)(y - 3) = 0 \Rightarrow y = 2 \text{ or } y = 3

Recall y=5xy = 5^x:

Final answers:

x=log5(2)orx=log5(3)x = \log_5(2) \quad \text{or} \quad x = \log_5(3)

6. Solve the logarithmic equation

Solve for xx:

4log3(x2)log3(x)=144 \log_3(x^2) - \log_3(x) = 14

Solution
Given:

4log3(x2)log3(x)=144 \log_3(x^2) - \log_3(x) = 14

Use log power rule:

log3(x2)=2log3(x)42log3(x)=8log3(x)\log_3(x^2) = 2 \log_3(x) \Rightarrow 4 \cdot 2 \log_3(x) = 8 \log_3(x)

So the equation becomes:

8log3(x)log3(x)=147log3(x)=14log3(x)=28 \log_3(x) - \log_3(x) = 14 \Rightarrow 7 \log_3(x) = 14 \Rightarrow \log_3(x) = 2

Now rewrite in exponential form:

x=32=9x = 3^2 = 9

Final answer: x=9x = 9

Extra Advanced Exercises

1. Exponential and Logarithmic Equation Combo

Solve for ( x ):

2x=5x12^x = 5^{x - 1}

2. Domain Puzzle: Log of a Log

Find the domain of:

f(x)=log2(log3(x1))f(x) = \log_2(\log_3(x - 1))

3. Change of base formula.

Prove the change of base formula for the log function:

logb(x)=logk(x)logk(b)\log_b(x) = \frac{\log_k(x)}{\log_k(b)}