PLACEHOLDER Functions and Graphs

Learning Objectives

What is a Function?

A function is a relation where each input has exactly one output. We write this as f(x)=yf(x) = y, where:

Function Notation

If f(x)=2x+3f(x) = 2x + 3, then:

Domain and Range

Domain: The set of all possible input values (x-values)
Range: The set of all possible output values (y-values)

Example

For f(x)=x2f(x) = \sqrt{x - 2}:

Types of Functions

Linear Functions

f(x)=mx+bf(x) = mx + b

Quadratic Functions

f(x)=ax2+bx+cf(x) = ax^2 + bx + c

Other Important Functions

Transformations

Starting with a parent function f(x)f(x):

Transformation New Function Effect
Vertical shift up f(x)+kf(x) + k Move up kk units
Vertical shift down f(x)kf(x) - k Move down kk units
Horizontal shift left f(x+h)f(x + h) Move left hh units
Horizontal shift right f(xh)f(x - h) Move right hh units
Vertical stretch af(x)af(x) Stretch by factor aa
Horizontal stretch f(xb)f(\frac{x}{b}) Stretch by factor bb

Key Concepts to Remember

  1. Vertical Line Test: A graph represents a function if every vertical line intersects it at most once
  2. Function Composition: (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x))
  3. Inverse Functions: If ff and gg are inverses, then f(g(x))=xf(g(x)) = x and g(f(x))=xg(f(x)) = x

Practice Problems

Try working through these during class:

  1. Find the domain of f(x)=1x24f(x) = \frac{1}{x^2 - 4}
  2. Graph g(x)=x2+1g(x) = |x - 2| + 1
  3. If f(x)=x2f(x) = x^2 and g(x)=x+3g(x) = x + 3, find (fg)(x)(f \circ g)(x)